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Problem 1. Show that

(a) the order of growth of f(z) = ez
2

is 2,

(b) the order of growth of g(z) = cos z1/2 =
∑∞
n=0(−1)nzn/(2n)! is 1/2,

(c) | sinπz| ≤ eπ|z|.

(a) Using the power series expansion of the exponential function, we have |ez2 | ≤ e|z|
2

,

so ρf ≤ 2. On the other hand, for x ∈ R>0, if ex
2 ≤ AeBx

ρ

, then ex
2−Bxρ is bounded.

Taking x→∞ shows that this is impossible when ρ < 2. Hence ρf = 2.

(b) We have

|g(z)| ≤
∞∑
n=0

(|z|1/2)2n

(2n)!
≤
∞∑
m=0

(|z|1/2)m

m!
= e|z|

1/2

,

so ρg ≤ 1/2. On the other hand, for −x ∈ R<0,

g(−x) =

∞∑
n=0

(x1/2)2n

(2n)!
= cosh(x1/2) =

ex
1/2

+ e−x
1/2

2
≥ 1

2
ex

1/2

.

An argument as in (a) shows that ρg ≥ 1/2, hence, ρg = 1/2.

(c) We have

| sinπz| = |e
iπz − e−iπz|

2
≤ e|iπz| + e|−iπz|

2
= eπ|z|.

Problem 2 (Exercise 9). Let S be a sector at the origin forming an angle of π/β and F
be a holomorphic function in S that is continuous on S. Suppose that |F (z)| ≤ 1 on ∂S
and |F (z)| ≤ Cec|z|α for all z ∈ S, where 0 < α < β and C, c > 0. Prove that |F (z)| ≤ 1
for all z ∈ S.

This is the extension of the Phragmén–Lindelöf principle to more general settings.

Without loss of generality, we may assume S = {reiθ : −π/(2β) < θ < π/(2β)} (other-
wise just compose with a rotation). Consider α < γ < β, and define, for ε > 0,

Fε(z) = F (z)e−εz
γ

.

The condition on γ implies the following:

(i) γ < β: for z = reiθ ∈ S, we have −π2 < −( γβ )π2 < γθ < ( γβ )π2 < π
2 , and

cos(γθ) ≥ δ > 0, δ independent of θ.

So zγ is well-defined using the principal branch of logarithm and Re zγ = Re(rγeiγθ) =
rγ cos(γθ) ≥ rγδ. Thus

|e−εz
γ

| = e−εRe zγ ≤ e−εδr
γ

(ii) α < γ: for z = reiθ ∈ S, we have

|Fε(z)| ≤ Cecr
α−εδrγ → 0

as |z| = r →∞.
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Because Fε decays to zero near infinity, it must acquire a maximum at some w ∈ S.
By the maximum-modulus theorem, w cannot be in the interior unless F ≡ 0; now if
w ∈ ∂S, the assumption of F on ∂S implies |Fε(z)| ≤ 1 for all z ∈ S. Take ε→ 0+.

Problem 3 (Exercise 12, Hardy’s Theorem). If f is a (continuous) function on R
satisfying f(x) = O(e−πx

2

) and f̂(ξ) = O(e−πξ
2

), then f is a constant multiple of

e−πx
2

.

This theorem roughly says that the fastest f and f̂ can simultaneously decay (unless
being trivial) is when they are constant multiples of the Gaussian.

Step 1. f̂ extends to an entire function: define

f̂(z) =

∫ ∞
−∞

f(x)e−2πizx dx.

The proof that f̂(z) is holomorphic in Sa (for any a > 0) is similar to Theorem 3.1 (and
other homework exercises). The key point is that the decay of f(x) gives a quadratic term
−πx2 in the exponent that dominates the possible exponential growth from eRe(−2πizx)

in every given strip Sa.

Step 2. Assume f(x) is even. Then f̂(z) is even. Define g(z) = f̂(z1/2). Show that g is
entire and satisfies

|g(x)| ≤ ce−πx and |g(z)| ≤ ceπ|z|

for x ∈ R and z ∈ C.

It is easy to see that f̂(−z) = f̂(z) by changing the variable x 7→ −x in the definition
and using that f(x) is even. Note that g(z) is originally well-defined and holomorphic

on −π < θ < π, but because f̂ is even, f̂(iy) = f̂(−iy), so g(z) extends continuously
along the branch cut. It is in fact holomorphic by e.g. the symmetry principle (Theorem
5.5, Chapter 2).

For x ≥ 0, the first estimate follows from the original assumption f̂(ξ) = O(e−πξ
2

). For
x < 0, this is the same as the second estimate, so we only need to prove the latter. In
fact, for z = reiθ,

|g(z)| ≤
∫ ∞
−∞
|f(x)|eRe(−2πiz1/2x) dx ≤ C

∫ ∞
−∞

e−π(x
2−2x Im z1/2) dx

= C

∫ ∞
−∞

e−π(x
2−2xr1/2 sin(θ/2)) dx = Ceπr sin

2(θ/2)

∫ ∞
−∞

e−π(x−r
1/2 sin(θ/2))2 dx

= C ′eπr sin
2(θ/2) ≤ C ′eπ|z|,

where C ′ > 0 is independent of z.

Step 3. Take f and g as in Step 2. For β > 1, apply Phragmén–Lindelöf principle to
the function

Fβ(z) = g(z)eγz where γ = π
ie−iπ/(2β)

sinπ/(2β)

and the sector 0 ≤ θ ≤ π/β < π, and let β → 1+.

We need to bound Fβ along the boundary and verify the growth estimate (with α = 1).
First, we have

|Fβ(z)| ≤ |g(z)|e|γz| ≤ ceπ|z|eπ|z|/(sinπ/(2β)) ≤ ce3π|z|

for β sufficiently close to 1. Along the positive real axis, the first estimate of Step 2
shows that

|Fβ(x)| ≤ ce−πxexRe γ = ce−πxexπ = c;
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while for z = Reiπ/β , we have γz = iRπeiπ/(2β)/(sinπ/(2β)), so Re(γz) = −Rπ and

|Fβ(z)| ≤ ceπ|z|e−Rπ = c.

Then the Phragmén–Lindelöf principle implies that |Fβ(z)| ≤ c. But Fβ(z) → g(z)eπz

as β → 1+, and thus g(z)eπz is bounded on the closed upper half plane (including the
negative real axis by continuity).

Repeat the same argument to the lower half plane with −π < −π/β ≤ θ ≤ 0 and
γ = −πieiπ/(2β)/(sinπ/(2β)) to show that eπzg(z) is bounded in C, hence a constant.

Therefore g(z) is a constant multiple of e−πz and f, f̂ are multiples of e−πz
2

.

Step 4. For an odd function f , we similarly have f̂ is odd, and so f̂(0) = 0. Because f̂

is entire and has a zero at 0, f̂(z)/z is entire and even. Repeating the above argument
to this function (the estimates will continue to hold because 1/z will only add further

decay near infinity) will show that f̂(z) = cze−πz
2

, but this contradicts the assumption

f̂(ξ) = O(e−πξ
2

) unless c = 0. So f = f̂ = 0.

Step 5. General case: write

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
.
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